full2011_inter.pdf - page 25

2011 International Conference on Alternative Energy in Developing Countries and Emerging Economies
- 25 -
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
HydrogenProductionRate (mL/dL)
0
0.5
1
1.5
2
2.5
EffluentXyloseConcentration (g/L)
HydrogenProductionRate
EffluentXylose Concentration
0
5
10
15
20
25
30
35
40
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Time (day)
MetabolicProducts (mM)
0
1
2
3
4
5
6
7
8
pH
ETOH AA PA BA LA FA pH
Fig. 2. Profiles of hydrogen production rate, effluent xylose
concentration, pH, and metabolite concentrations in the AF reactor
operated at 55 ºC and the OLR of 15 (
I
), 30 (
II
), 60 (
III
), and 120 (
IV
)
g-xylose/d/L. ETOH: ethanol; AA: acetate; PA: propionate; BA:n-&
iso-butyrate; LA: lactate; FA: formate.
IV. C
ONCLUSIONS
Hydrogen can be successfully produced with rather
high yield and rate from the UASB reactor and AF
reactor, respectively. High hydrogen yield of 251.2±11.3
ml
H
2
/g-xylose, corresponding to the hydrogen
production rate of 15073.8±675.5 mL
H
2
/d/L was
achieved from the UASB reactor operated the OLR of 60
g
xylose/d/L. Meanwhile, the AF reactor can produce
high hydrogen production rate of 19383.5±693.9 ml-
H
2
/d/L, corresponding to hydrogen yield of 161.5 ± 5.8
mL
H
2
/g
xylose. The soluble solution generated from
both UASB and AF reactors was mainly contained
mainly with the metabolite products of butyrate and
acetate.
R
EFERENCES
[1] Larsen J, Petersen ØM, Thirup L, Li WH, Iversen FK.
The IBUS process-lignocellulosic bioethanol close to
a commercial reality. Chem. Eng. Technol
2008,
31(5), pp. 765-772.
[2] Kongjan P, O-Thong S, Meher K, Min B, Angelidaki
I. Biohydrogen production from wheat straw
hydrolysate by dark fermentation using extreme
thermophilic mixed culture. Biotechnol Bioeng 2010,
105(5), pp. 899-908
[3] Kaparaju P, Serrano M, Thomsen A B, Kongjan, P ,
Angelidaki I. Bioethanol, biohydrogen and biogas
production from wheat straw in a biorefinery
concept. Bioresource technology, 2009, 100 (9), pp.
2562-2568.
[4] Lin C Y, Wu C C, Hung C H. Temperature effects on
fermentative hydrogen production
from xylose using
mixed anaerobic cultures. Int J of Hydrogen Energy,
2008, 33(1), pp. 45-50.
[5] O-Thong S, Prasertsan P, Karakashev D, Angelidaki
I. High-rate continuous hydrogen production by
Thermoanaerobacterium
thermosaccharolyticum
PSU-2 immobilized on heat-pretreated methanogenic
granules. Int J Hydrogen Energy 2008, 33(22), pp.
6498-6508.
[6] Koskinen PP, Lay CH, Puhakka JA, Lin JJ, Wu SY,
Orlygsson J, Lin CY, High-efficiency hydrogen
production by an anaerobic, thermophilic enrichment
culture from an icelandic hot spring. Biotechnol
Bioeng 2008, 101(4): 665-678.
[7] de Vrije T, Bakker R, Budde M, Lai M, Mars A,
Claassen P. Efficient hydrogen production from the
lignocellulosic energy crop miscanthus by the
extreme thermophilic bacteria
Caldicellulosiruptor
saccharolyticus and Thermotoga neapolitana
.
Biotechnol Biofuels 2009, doi:10.1186, pp.1754-
6834- 2(1)-12.
[8] Hallenbeck P. Fundamentals of the fermentative
production of hydrogen. Water Sci Technol
2005,
52(1-2), pp. 21-29.
[9] Kotsopoulos T, Zeng R, Angelidaki I. Biohydrogen
production in granular up-flow anaerobic sludge
blanket (UASB) reactors with mixed cultures under
hyper-thermophilic temperature (70 ºC). Biotechnol
Bioeng 2006, 94(2), pp. 296-302.
[10] Zheng H, Zeng R, Angelidaki I. Biohydrogen
production from glucose in upflow bio-film reactors
with plastic carriers under extreme thermophilic
conditions (70° C). Biotechnol Bioeng 2008, 100(5),
pp. 1034-1038.
[11] Pattra S, Sangyoka S, Boonmee M, Reungsang A.
Bio-hydrogen production from the fermentation of
sugarcane bagasse hydrolysate by Clostridium
butyricum. Int J Hydrogen Energy 2008, 33(19), pp.
5256-5265.
[12] Kongjan P, O-Thong S.
Thermophilic biohydrogen
production in the up-flow anaerobic reactors: Effect
of changing substrate on microbial populations.
2011, Manuscript.
[13] Angelidaki I, Petersen S P, Ahring BK. Effects of
lipids on thermophilic anaerobic digestion and
reduction of lipid inhibition upon addition of
bentonite. Appl. Microbiol. Biotechnol. 1990, 33,
pp. 469-472.
[14] Kongjan P, Angelidaki I.: Performance and
microbial community analysis of two-stage process
with
extreme
thermophilic
hydrogen
and
thermophilic methane production from hydrolysate
in UASB reactors. Bioresour Technol. 2011, 102 (5),
pp. 4028-4035.
[15] O-Thong S, Hniman A, Prasertsan P, Imai T.:
Biohydrogen production from cassava starch
processing wastewater by thermophilic mixed
cultures. Int J Hydrogen Energy, 2011,
36(5),
pp.3409-3416.
I
II
III
IV
1...,15,16,17,18,19,20,21,22,23,24 26,27,28,29,30,31,32,33,34,35,...354
Powered by FlippingBook