processding59.pdf - page 292

1192
êćøćÜìĊę
ǰ13
ÖćøđðøĊ
÷ïđìĊ
÷ïĕüïĎ
úúŤ
óćøćöĉ
đêĂøŤ
ÝćÖøąđïĊ
÷ïüĉ
íĊ
Maximum Likelihood, Least Square, Ēúą WAsP
×ĂÜך
ĂöĎ
úúöÿëĉ
êĉ
øć÷ðŘ
ÿëćîĊ
üĉ
ÝĆ
÷óúĆ
ÜÜćîúöđìóćìĊę
øąéĆ
ïÙüćöÿĎ
Ü 120 m ך
ĂöĎ
úúöÿëĉ
êĉ
đéČ
ĂîÖøÖãćÙöóý 2558
Algorithm
Weibull
k
Weibull
c
(m/s)
Mean (m/s)
Proportion
Above Mean
Power Density
(W/m
2
)
R
2
Maximum
likelihood
1.976
4.778
4.236
0.455
90.0
0.88190
Least square
1.631
4.966
4.445
0.434
130.0
0.81880
WAsP
3.141
5.248
4.696
0.494
86.9
0.88573
Actual data
(44,639 time steps)
4.266
0.494
86.9
-
ÿøč
ðñúÖćøüĉ
ÝĆ
÷
ÝćÖÖćøýċ
ÖþćÖćøĒÝÖĒÝÜĂĆ
êøćđøĘ
üúöđÞúĊę
÷×ĂÜĂĞ
ćđõĂđìóć ÝĆ
ÜĀüĆ
éÿÜ×úć ēé÷ĂćýĆ
÷ך
ĂöĎ
úĂĆ
êøćđøĘ
üúöÿëĉ
êĉ
ìĊę
ĕéš
ÝćÖÖćøêøüÝüĆ
éìĊę
øąéĆ
ïÙüćöÿĎ
Ü 120 m êúĂéìĆĚ
ÜðŘ
(ÿĉ
ÜĀćÙö ó ý 2557 – ÖøÖãćÙö ó ý 2558) àċę
ÜĂćýĆ
÷ÖćøĒÝÖĒÝÜ
ĕüïĎ
úúŤ
ĒúąøąđïĊ
÷ïüĉ
íĊ
ĔîÖćøĀćÙŠ
ćóćøćöĉ
đêĂøŤ
øąéĆ
ïĒúąóćøćöĉ
đêĂøŤ
øĎ
ðøŠ
ćÜ ÝćÖÖćøýċ
ÖþćóïüŠ
ćøąđïĊ
÷ïüĉ
íĊ
WAsP ĔĀš
ñú
Öćøüĉ
đÙøćąĀŤ
ĂĆ
êøćđøĘ
üúöđÞúĊę
÷ĕéš
ëĎ
Öêš
ĂÜĒöŠ
î÷Ğ
ćĒúąĔÖúš
đÙĊ
÷ÜÖĆ
ïÙŠ
ćđÞúĊę
÷ÝćÖÖćøüĉ
đÙøćąĀŤ
đßĉ
Üÿëĉ
êĉ
öćÖìĊę
ÿč
é (öĊ
ÙŠ
ć R
2
đך
ć
ĔÖúš
1 öćÖìĊę
ÿč
é) êćöéš
ü÷øąđïĊ
÷ïüĉ
íĊ
Maximum likelihood
Ēúą Least Square êćöúĞ
ćéĆ
ï
Öĉ
êêĉ
ÖøøöðøąÖćý
×Ă×ĂïÙč
è ïøĉ
þĆ
ì ÿćÖú đĂîđîĂ÷Ċ
ÝĞ
ćÖĆ
é ÿĞ
ćĀøĆ
ïìč
îÿîĆ
ïÿîč
îÖćøđÖĘ
ïך
ĂöĎ
úúöĒúąÖćøìĞ
ćüĉ
ÝĆ
÷×ĂÜēÙøÜÖćøĄ
đĂÖÿćøĂš
ćÜĂĉ
Ü
[1] Kasra Mohammadi, Omid Alavi, Ali Mostafaeipour, Navid Goudarzi, Mahdi Jalilvand. (2016). Assessing
different parameters estimation methods of Weibull distribution to compute wind power
density.
Energy Conversion and Management.
Volume 108, (322-335).
[2] Yeliz Mert Kantar and Ilhan Usta. (2015). Analysis of the upper-truncated Weibull distribution for
wind speed.
Energy Conversion and Management.
Volume 96, (81-88).
[3] V.L. Brano, A. Orioli, G. Ciulla, S. Culotta. (2011). Quality of wind speed fitting distributions for the
urban area of Palermo, Italy.
Renewable Energy.
36 (3), 1026-1039.
[4] D. Villanueva, A. Feijoo. (2010). Wind power distributions: A review of their appications.
Renewable
and Sustainable Energy Reviews.
14 (5), 1490-1495.
[5] S.A. Akdag, A. Dinler. (2009). A new method to estimate Weibull parameters for wind energy
applications.
Energy Conversion and Management.
50 (7), 1761-1766.
[6] K. Tar. (2008). Some statistical characteristics of monthly average wind speed at various heights.
Renewable and Sustainable Energy Reviews.
12 (6), 1712-1724
[7] M. J Stevens and P.T. Smulders. (1979). The estimation of the parameters of the Weibull wind
speed distribution for wind energy utilization purposes.
Wind Eng.
3 (2), 132-145.
1...,282,283,284,285,286,287,288,289,290,291 293,294,295,296,297,298,299,300
Powered by FlippingBook