1082
ÙĞ
ć×ĂïÙč
è
ĕéš
øĆ
ïđÜĉ
îĂč
éĀîč
îÖćøüĉ
ÝĆ
÷ÝćÖđÜĉ
îÖĂÜìč
îüĉ
ÝĆ
÷Ùèąüĉ
ì÷ćýćÿêøŤ
ǰ öĀćüĉ
ì÷ćúĆ
÷ÿÜ×úćîÙøĉ
îìøŤ
ǰ ðŘ
Üïðøąöćèǰ
2558 (Faculty of Science Research Fund) đú×ìĊę
ÿĆ
ââćǰüì óî ǰ
đĂÖÿćøĂš
ćÜĂĉ
Ü
[1] Naldoni, A., Bianchi, C. L. , Pirola, C., and Suslick, K. S. (2013). Porous TiO
2
microspheres with tunable
properties for photocatalytic air purification.
Ultrason. Sonochem
20(1), 445–451.
[2] Šuligoj, A., Štangar, U. L., and Tušar, N. N. (2014). Photocatalytic air-cleaning using TiO
2
nanoparticles
in porous silica substrate.
Chem. Pap.
68(9), 1265–1272.
[3] Ravi, S., Roshan, R., Tharun, J., Park, D.-W., Chun, H.-H., Park, H. and Selvaraj, M. (2015). Mesoporous
silica-giant particle with slit pore arrangement as an adsorbent for heavy metal oxyanions from
aqueous medium.
RSC Adv.
5(4), 10260–10266.
[4] Onnby, L., Giorgi, C., Plieva, F. M., and Mattiasson, B. (2010). Removal of heavy metals from water
effluents using supermacroporous metal chelating cryogels.
Biotechnol. Prog.
26(5), 1295–302.
[5] Guo, Y., and ,Yu, X. (2015). Understanding the microscopic moisture migration in pore space using
DEM simulation
ǰ
J. Rock Mech. Geotech. Eng.
7(2), 171–177.
[6] Ghampson, I. T., Newman, C., Kong, L., Pier, E., Hurley, K. D., Pollock, R. A., Walsh, B. R., Goundie, B.,
Wright, J., Wheeler, M. C., Meulenberg, R. W., DeSisto, W. J., Frederick, B. G., and Austin, R. N.
(2010). Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous
silica supported cobalt Fischer–Tropsch catalysts.
Appl. Catal. A Gen.
388(1–2), 57–67.
[7] Fu, T., Lv, J., and Li, Z. (2014). Effect of Carbon Porosity and Cobalt Particle Size on the Catalytic
Performance of Carbon Supported Cobalt Fischer–Tropsch Catalysts.
Ind. Eng. Chem. Res.
53(4), 1342–1350.
[8] Brandon, N. P., and Brett, D. J. (2006). Engineering porous materials for fuel cell applications.
Philos.
Trans. A. Math. Phys. Eng. Sci.
364(1838), 147–159.
[9] Zhou, W., Ran, R., Shao, Z., Jin, W., and Xu, N. (2010). Synthesis of nano-particle and highly porous
conducting perovskites from simple in situ sol-gel derived carbon templating process.
Bull.
Mater. Sci.
33(4), 371–376.
[10] Kashiwagi, T., Shields, J. R., Harris, R. H., and Davis, R. D. (2003). Flame-retardant mechanism of
silica: Effects of resin molecular weight.
J. Appl. Polym. Sci.
87(9), 1541–1553.