932
đĂÖÿćøĂš
ćÜĂĉ
Ü
[1] Tanskul, S., Amornthatree, K. and Jaturonlak, N. (2013). A new cellulose-producing bacterium,
Rhodococcus
sp. MI 2: Screening and optimization of culture conditions.
Carbohydrate
Polymers
. 92, 421-428.
[2] Hong, F., Guo, X., Zhang, S., Han, S., Yang, G. and Jonsson, L. (2012). Bacterial cellulose
production from cotton-based waste textiles: Enzymatic saccharification enhanced by
ionic liquid pretreatment.
Bioresource Technology
. 104, 503-508.
[3] Yamada, H., Tanaka, R., Sulaiman, O., Hashim, R., Hamid, Z.A.A., Yahya, M.K.A., Kosugi, A., Arai, T.,
Murata, Y., Nirasawa, S., Yamamoto, K., Ohara S., Yusof, M.N.M., Ibrahim, W.A. and Mori, Y.
(2010). Old oil palm trunk: A promising source of sugars for bioethanol production.
Biomass
and Bioenergy
.34, 1608-1613.
[4] Kosugi, A., Tanaka, R., Magara, K., Murata, Y., Arai, T., Sulaiman, O.,Hashim, R., Hamid, Z.A.A.,
Yahya, M.K.A., Yusof, M.N.M., Ibrahim, W.A., and Mori, Y. (2010). Ethanol and lactic acid
production using sap squeezed from old oil palm trunks felled forreplanting.
Bioscience and
Bioengineering
.110, 322-225.
[5] Ashwell, G. (1957). Colorimetric analysis of sugars.
Methods Enzymol
. 3, 73–105.
[6] Wang, Z., Huang, K., Wang, B., Wu, R., Tag, J., Peng, X. and Uaw, D. (2012). Molecular Weight and
Distribution of Cellulose and Cellulose Microspheres.
Agricultural Biotechnology
. 1(1), 44-46.
[7] Castro C., Zuluaga R., Alvarez C., Putaux J., Caro G., Rojas O., Mondragon I. and Ganan P. (2012).
Bacterial cellulose produced by a new acid-resistant strain of
Gluconacetobacter
genus.
Carbohydrate Polymers
. 89, 1033-1037.
[8] Gomes F., Silva N., Trovatti E., Serafim L., Duarte M., Silvestre A., Neto C. and Freire C. (2013).
Production of bacterial cellulose by
Gluconacetobactersacchari
using dry olivemill residue.
Biomass and Bioenergy
. 55, 205-211.
[9] Brown, R. M., Willison, J. H M. and Richardson, C. L. (1976). Cellulose biosynthesis in
Acetobacterxylinum
: Visualization of the site of synthesis and direct measurement of the
in vivo process.
Proceedings of the National Academy of Sciences
. 73(12), 4565-4569.
[10] Brown, E. E. (2007). Bacterial Cellulose/Thermoplastic Polymer Nanocomposites.
Master of
science in chemical engineering
. Washington State University.
[11] Mohammadkazemi, F., Azin, M. and Ashori, A. (2015). Production of bacterial cellulose using
different carbon sources andculture media.
Carbohydrate Polymers
. 117, 518-523.
[12] Vazquez, A., Foresti, M. L., Cerrutti, P. and Galvagno, M. (2013). Bacterial Cellulose from Simple
and Low Cost Production Media by
Gluconacetobacterxylinus
.
Journal of Polymers and
the Environment.
21, 545-554.
[13] Barud, H.S., Ribeiro, C.A., Crespi, S., Martines, M.A.U., Dexpert-Ghys, J., Marques, R.F.C.,
Messaddeq, Y. and Ribeiro, S.J.L. (2007). Thermal characterization of bacterial
cellulose–phosphate composite membranes.
Journal of Thermal Analysis and
Calorimetry
.87(3), 815–818.
[14] Nasab, M. and Yousefi, A. (2011). Biotechnological production of cellulose by
Gluconacetobacterxylinus
from agricultural waste.
Iranian Journal of Biotechnology
. 9(2),
93-101